M. Math. IInd year Backpaper Exam 2022
 Commutative Algebra
 Instructor : B. Sury

Attempt ONLY FOUR problems.

Each Question carries 12 marks; a score of 45 or more will be taken as 45.
Unless specified otherwise, all rings are commutative with unity.
Q 1a. Show that every finitely presented, flat A-module is projective.

OR

Q 1b. If A is a domain in which each finitely generated ideal is principal, show that a module is flat if and only if it is torsion-free.

Q 2a. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence of A-modules where M is finitely generated and N is finitely presented. Prove that L must be finitely generated.

OR

Q 2b. For ideals I, J show that the A-modules $\operatorname{Tor}_{1}(A / I, A / J)$ and $\operatorname{Tor}_{2}(A / I, A / J)$ are isomorphic to $(I \cap J) / I J$ and $\operatorname{Ker}(I \otimes J \rightarrow I J)$ respectively.

Q 3a. Show that if $\operatorname{Spec}(A)$ is not connected, then $A \cong A_{1} \times A_{2}$ where the rings A_{1}, A_{2} are both non-zero.

OR

Q 3b. For local subrings A, B of a field K, recall that A is said to be dominated by B if A is a subring of B and the maximal ideal of A is the contraction of the maximal ideal of B. Prove that any valuation ring C is maximal with respect to the partial order induced by dominance for local subrings of the quotient field of C.

Q 4a. Let G be a finite group of automorphisms of a ring A. Prove that A is an integral extension of $A^{G}:=\{a \in A: g(a)=a\}$.

OR

Q 4b. If all prime ideals of a ring A are principal, prove that all ideals must be principal.

Q 5a. If $I \subset \mathbb{R}\left[X_{1}, \cdots, X_{n}\right]$ is an ideal and $V_{\mathbb{R}}(I):=\left\{x \in \mathbb{R}^{n}: f(x)=\right.$ $0 \forall x \in I\}$, then observe

$$
V_{\mathbb{R}}(I)=\left\{x \in \mathbb{R}^{n}:\left(f_{1}^{2}+f_{2}^{2}+\cdots+f_{d}^{2}\right)(x)=0\right\}
$$

where $I=\left(f_{1}, \cdots, f_{d}\right)$.
In general, for any field K which is not algebraically closed, prove the analogous statement that the set of zeroes of a family of polynomials in $K\left[X_{1}, \cdots, X_{n}\right]$ is the zero set of a single polynomial.

OR

Q 5b. If $f: M \rightarrow N$ is an A-module homomorphism such that the induced homomorphisms $f_{\mathfrak{m}}: M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}}$ is injective for each maximal ideal \mathfrak{m} of A, prove that f must be injective.

